Multi-view Food Recognition Using Multi-kernel Biased Maximum Margin Analysis

نویسندگان

  • A.Jayakumar
  • S.Hemapriya
چکیده

Food recognition is a key factor for estimating the value of everyday food intakes. Food classification plays an important role in food recognition application. Recently, with the increase in unhealthy diets that will threaten people’s life due to the various risks like liver trouble, heart stroke and so on. In this project work we propose multi view food recognition using BMMA which is the mainstay of current image retrieval system. The food ingredients are detected through a combination of deformable part based model and a texture verification model. The food ingredients are classified based on the consideration like shape, color, size and texture. By using these features, better classification will be attained. The calorie Value of the food ingredient is evaluated from the PFID. Keywords— food recognition, BMMA classification, calorie determination. _________________________________________________________________________________________________________________

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-kernel maximum entropy discrimination for multi-view learning

Maximum entropy discrimination (MED) is a general framework for discriminative estimation which integrates the principles of maximum entropy and maximum margin. In this paper, we propose a novel approach named multi-kernel MED (MKMED) for multi-view learning (MVL), which takes advantage of the complementary principle for MVL. Multiple kernels encode the similarities in different views. We obtai...

متن کامل

Multi-Class Classification with Maximum Margin Multiple Kernel

We present a new algorithm for multi-class classification with multiple kernels. Our algorithm is based on a natural notion of the multi-class margin of a kernel. We show that larger values of this quantity guarantee the existence of an accurate multi-class predictor and also define a family of multiple kernel algorithms based on the maximization of the multi-class margin of a kernel (MK). We p...

متن کامل

Nonlinear Maximum Margin Multi-View Learning with Adaptive Kernel

Existing multi-view learning methods based on kernel function either require the user to select and tune a single predefined kernel or have to compute and store many Gram matrices to perform multiple kernel learning. Apart from the huge consumption of manpower, computation and memory resources, most of these models seek point estimation of their parameters, and are prone to overfitting to small...

متن کامل

Multi-view Recognition Using Weighted View Selection

In this paper, we present an algorithm for multi-view recognition in a distributed camera setting that learns which viewpoints are most discriminative for particular instances of ambiguity. Our method is built on top of 2D recognition algorithms and casts view selection as the problem of optimizing kernel weights in multiple kernel learning. The main contribution is a locality-sensitive meta-tr...

متن کامل

Gini Support Vector Machine: Quadratic Entropy Based Robust Multi-Class Probability Regression

Many classification tasks require estimation of output class probabilities for use as confidence scores or for inference integrated with other models. Probability estimates derived from large margin classifiers such as support vector machines (SVMs) are often unreliable. We extend SVM large margin classification to GiniSVM maximum entropy multi-class probability regression. GiniSVM combines a q...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016